BoostLR: A Boosting-Based Learning Ensemble for Label Ranking Tasks
نویسندگان
چکیده
منابع مشابه
Online Boosting Algorithms for Multi-label Ranking
We consider the multi-label ranking approach to multilabel learning. Boosting is a natural method for multilabel ranking as it aggregates weak predictions through majority votes, which can be directly used as scores to produce a ranking of the labels. We design online boosting algorithms with provable loss bounds for multi-label ranking. We show that our first algorithm is optimal in terms of t...
متن کاملLabel Ranking with Partial Abstention using Ensemble Learning
In label ranking, the problem is to learn a mapping from instances to rankings over a finite set of predefined class labels. In this paper, we consider a generalization of this problem, namely label ranking with a reject option. Just like in conventional classification, where a classifier can refuse a presumably unreliable prediction, the idea is to concede a label ranker the possibility to abs...
متن کاملMulti-label Ensemble Learning
Multi-label learning aims at predicting potentially multiple labels for a given instance. Conventional multi-label learning approaches focus on exploiting the label correlations to improve the accuracy of the learner by building an individual multi-label learner or a combined learner based upon a group of single-label learners. However, the generalization ability of such individual learner can ...
متن کاملDiscriminative Learning for Label Sequences via Boosting
This paper investigates a boosting approach to discriminative learning of label sequences based on a sequence rank loss function. The proposed method combines many of the advantages of boosting schemes with the efficiency of dynamic programming methods and is attractive both, conceptually and computationally. In addition, we also discuss alternative approaches based on the Hamming loss for labe...
متن کاملSmooth Boosting for Margin-Based Ranking
We propose a new boosting algorithm for bipartite ranking problems. Our boosting algorithm, called SoftRankBoost, is a modification of RankBoost which maintains only smooth distributions over data. SoftRankBoost provably achieves approximately the maximum soft margin over all pairs of positive and negative examples, which implies high AUC score for future data.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3026758